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ABSTRACT 
This paper presents the knowledge discovery process in a database related to the development of computer 

systems through the Apriori algorithm. This method of data mining was succesfull in discovering of patterns of 

relationships between kinds of non-conformities found during the software development and relationships of 

noncompliance with the kinds of tasks to be performed as an association between two variables "Simple" and 

"Average" in more than fifty percent of the cases whit tasks labeled as "Improvement". The discovered rules 

may assist in the decision making by development systems managers in order to reduce non-conformities related 

to the development of computational systems. 
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I. INTRODUCTION 
The rapid growth of data derived from 

information systems is constant.These stored data are 

useless without, for example, the use of information 

extraction methods that allow the discovery of 

patterns, models and previously unknown 

relationships. Obviously, to support the decision 

making process, only accurate and relevant 

information is valuable for managers. In this case, it 

is valid to apply data mining methods based on 

statistical algorithms and machine learning 

techniques  to discover patterns that "may be rules, 

affinities, correlations, trends or forecasting models" 

(Turban, 2010, p. 460). 

This work aims to discover relationships between the 

kinds of errors found during the testing phase of 

information systems, relating kinds of errors and 

levels of urgency of the tasks perfomed inside a 

software development company. 

It also seeks to demonstrate that the pressure for 

delivering a task can induce the insertion of system 

errors  by programmers, using the techniques of 

knowledge discovery process. The following topics 

will cover steps of this study, the chosen database 

and its attributes, the mining algorithm used and the 

results achieved. 

 

II. THE PROCESS OF KNOWLEDGE 

DISCOVERY IN DATABASE (KDD) 
According to Turban "the knowledge discovery 

based on computer has been used since the 60s. 

However, the techniques which make it possible have 

been expanded and improved with time" (Turban, 

2010, p. 405). In the 1990s with the creation of data 

warehouses, the volume of stored  data increased  and  

 

created room for the techniques of Knowledge 

Discovery in Databases (KDD).  

 
Figure 1 – KDD overview 

 

Source: Fayyad, 1996  

This concept has been used since the 1980s 

demonstrating that there are valuable results 

produced by a process ran over data to extract 

relevant information for decision making. ” Acording 

to Mainon and Rokach (2010), KDD is “an 

automatic, exploratory analysis and modeling of large 

data repositories. KDD is the organized process of 

identifying valid, novel, useful, and understandable 

patterns from large and complex data sets.”.  Yet, 

according to the same authors, “Data Mining (DM) is 

the core of the KDD process, involving the inferring 

of algorithms that explore the data, develop the 

model and discover previously unknown patterns. 

The model is used for understanding phenomena 

from the data, analysis and prediction.”. Based on 

Adriaans and Zantinge (1996), the discovery process 

comprises:  

 Selection of data: from a database, relevant data 

should be selected to be part of the process goals; 

 Preprocessing: after being selected,data should 

be cleaned, in order to eliminate redundancies, 

inconsistencies and null values that may hinder 

the mining or analysis of data; 
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 Transformation: this step encodes data in order 

to facilitate the work of mining, discretizes and 

restructures the data, e.g. the database value 

AGE discriminated as {1,2, 3 ..., 27, 31, 34, ..., 

91,92,97} may be grouped as {1-15, 16-30, ..., 

76-90}; 

 Mining: "the process of extracting unknown 

information, while significant, from large 

databases to be used in business decision 

making." (Singh, 1998); 

 Interpretation: in this phase, also known as post 

processing, resulting information from the 

mining process is analyzed and interpreted. 

Fig. 1 presents a sequential overview of the 

KDD process, since from the aquisition of the raw 

data  until the interpretation of these same data turned 

into knowledge. It´s important to notice that the 

phases are not necessarily required, after obtaining 

the data, sometimes uneeded preprocessing and/or 

transformation are skiped and the data mining is 

performed, followed by the results interpretation. 

 

III. SOFTWARE DEVELOPMENT 

ERRORS DATABASE 
The database chosen for the process of 

knowledge discovery comes from a management 

system used by a medium-sized software 

development company. Such a database holds data 

about non-conformities found during the compliance 

and quality testing of the produced software. 

The company applies an adaptation of agile 

development methodology called Scrum, consisting 

basically in dividing the system development into 

several functional phases, called sprints. Each sprint 

has a cycle 2-4 weeks with planning meeting, 

periodic review meeting and feedback meeting. Each 

phase is divided into smaller parts which are called 

tasks. These are analyzed by specially designated 

teams and passed on to the developers responsible for 

the tasks. 

When the development team completes a task, it 

transfers the resulting artifacts to the test teams to 

perform the checks in accordance with what was 

specified. If non-conformities are found, they are 

recorded in a database, and forwarded to the 

developers responsible for the correction. 

The data used in the KDD process have been 

extracted from this database. Initially five attributes 

were extracted; however, two of these were 

eliminated in the selection process by presenting 

repeated and inconsistent values. The choosene 

mining algorithm changed the structure of the 

database becoming one of the attributes unsuitable 

for mining and dividing another attribute used to 

categorize kinds of non-conformities in five new 

ones, according to the non-conformities registered in 

the database. 

The class attribute presented in table TaskType is 

used as an identifier for the task urgency. Such an 

attribute has five possible values: "Improvement" 

(when the task is based on an existing functionality, 

but at the request of the customer, analyst or tester, it 

is submitted for improvement), "New" (when the task 

is to add some new functionality), "RNC (Legacy)" 

(RNC is a Record of non-Conformity, when the client 

requests some urgent change in the system, due to an 

error or problem that causes loss to the customer - 

considered as Legacy because they are old and not 

fixed requests), "RNC (Recent)” (when the customer 

requests an urgent change in the system, due to an 

error or problem that causes loss to the customer – 

considered Recent because they are new) and 

"Demand" (when changes are needed to make the 

system to conform to laws, standards, ans so on). 

Changes required by standards and laws are rare 

but urgent, the RNC are records of non-compliance 

that receive attention and classification of high 

degree of urgency, being labeled as "New" or 

"Improvement".  

The database presents the kinds of non-

compliances divided into five categories: "Simple" 

(when the error found in testing is easy to fix and/or 

requires less than an hour of work), "Average" (when 

the error found in testing is not so easy to fix and/or 

require more than one hour of work), "Complex" 

(when the error found in testing somehow stoped the 

activity of the user on the system), "Standardization" 

(when the error found in testing refers to the visual 

standards imposed by the company) and “Text” 

(when the error found in testing refers to grammar, 

syntax or language issue).  

The five listed non-conformities are classified 

only at the level of existence, which means, if the 

error indeed exists (no matter the amount of the 

occurrences) is considered as an "S" and otherwise 

the variable will be displayed with a "?". 

 

IV. METHODOLOGY 
For the purposes of this research, the process of 

knowledge discovery used the methodology proposed 

by Fayyad (1996). Data were initially selected from 

three different tables: one that lists the tasks to be 

performed, one containing the errors found in the 

system and another one that lists the error levels 

found in the system. 

Fields were chosen according to the research 

goals. We do not select data to identify somehow the 

company or employees.. Then we excluded the tasks 

that had no errors, since they were useless for the 

purposes of this data mining research. 

Finally, five attributes were selected: "Task_cod" 

(identifies the task id, the primary key), 

"task_priority" (identifies a priority valued from zero 

to twenty, in ascending order of importance), 

"error_level_desc" (identifies the type of error, 
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"Simple", "Average", "Complex", "Standardization" 

and "Text"), task_level_desc (description of the task 

level, "Improvement", "New", ...) and “error_level” 

(level of error, numeric attribute). 

The attributes were reviewed and it was noted 

that it was not appropriate to use all of them, the 

"error_level" and "error_level_desc" attributes, even 

being different, have values related in  almost 100% 

of cases. The first one was removed. 

It was noticed that the "task_priority" attribute is 

repeated in many rows and by a system default it was 

always zero, which could lead to unwanted 

distortions in results, depending on the method 

chosen. This attribute has also been removed. 

The Apriori algorithm was applied because the 

initial goal of the process is to discover relationships 

between error kinds according to their presence in 

system testing. The algorithm aims the discovering of 

these relationships. According to Aurelio (1999), 

Apriori "is responsible for discovering the set of 

frequent items via multiple steps in the database. 

Each step starts with a seed set of items and such a 

seed will generate potential new seed sets called 

candidate items set "(AURÉLIO 1999, p. 13). 

According to Pang-Ning Tan: 

"The Apriori algorithm uses a level approach to 

generate association rules where each level 

corresponds to the number of items that belong to the 

consequent of the rule. Initially, all rules of high 

confidence that have only one item in the consequent 

are extracted. These rules are then used to generate 

new candidate rules. For example, if {acd} → {b} 

and {abd} → {c} are rules of high confidence then 

the candidate rule {ad} → {bc} is generated by the 

fusion of the consequent of both rules. Suppose the 

confidence to {bcd} → {a} is low. All rules 

containing the item in its consequent including {cd} 

→ {ab} {bd} → {ac} {bc} → {d} and {d} → {abc} 

may be discarded "(TAN 2005 p.417). 

With the choice of mining method it was decided 

to change the way the data is displayed, the choice of 

Apriori algorithm caused the restructuring of data, 

which were aligned according to the errors and then 

grouped by task. In this case, the field "task_cod" 

was considered irrelevant since it never repeats and 

does not add any information to the mining.  

The attribute was removed and 

"error_level_desc" was divided into columns 

according to different kinds of errors previously 

discussed. The database was constructed in such a 

way that each field holds the number of errors for 

each kind of error for each task, which means, if a 

certain task has two “Average” errors, three "Simple" 

errors, one "Complex" error and none (zero) “Text” 

error, the relevant fields would show the numerical 

values for each task. 

In this configuration it is still not possible to 

perform the mining because data are still in 

numerical format, which prevents the use of the 

algorithm. Therefore, fields with values greated than 

zero were replaced by "S" and the zero valued ones 

were given value "N", turning them into 

alphanumeric attributes. 

Still, to make the mining possible, non-english, 

special characters and blanks were removed and a 

text file was built to match the input requirements of 

used mining tool (Weka, discussed in the next 

section). In a first attempt, no interesting outcome 

was achieved, so the values “N” were replaced by 

"?". Such was done because the algorithm considered 

the proportion of "N" higher than "S", resulting in 

incorrect information. After the replacement some 

effective results were reached. After all the processes 

mentioned earlier, 1255 instances of tasks with errors 

were found, of these, 559 are labeled as 

"Improvement", 201 as "New", 459 as 

"RNC(Legacy)", 25 as "RNC(Recent) " and 11 as 

"Requirement". (Table 1). Some parameters had to be 

ajusted so that the algorithm would return some 

result. The metric type was chosen for confidence 

with a minimum of 18%. 

For the mining process it was used an open 

source and free tool, Weka, which provides several 

data mining methods. Such a software was developed 

and is maintained by the University of Waikato. It 

was chosen because its simplicity and, use easyness 

and because it meets the needs of this research. 

 

Table 1 – Number of errors by type of task 

Task Type Total 

Errors 

Percentage of total 

errors (%) 

Improvement 559 44,54 

New 201 16,01 

RNC(Legacy) 459 36,57 

RNC(Recent) 25 1,99 

Requirement 11 0,87 

 

V. RESULTS AND DISCUSSION 
Before mining, it was carried out an analysis of 

the data by using the Weka homescreen, which 

presents the amount of each attribute values. The 

amount of “Improvement” and “RNC (Legacy)” 

tasks outnumbers the other kinds, as shown in Table 

1 and Fig. 2, but the proportion is not considered in 

this case because the object of study is the discovery 

of relationships between the kinds of errors. The 

research on the reasons for this numerical 

disproportion is left for a further study. 

Fig. 3 displays the amount of each error kind 

related to the tasks. Since the the count of errors per 

task was replaced by the variable "S", the result of 
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the analysis is that each frame gives the graphical 

proportion of the occurrence of certain error relation 

to the "TaskType" attribute e.g.: the "Simple" 

attribute shows that there are 836 tasks with at least 

one occurrence of this non-compliance condition, 

which are divided according to the class attribute 

("TaskType"). Regarding the non-conformities 

labeled as "Simple", 43.66% of these are related to 

"Improvement" and 34.30% are related to "RNC 

(Legacy)".  

 

Figure 2 – Explorer Homescreen, Weka 

 
 

The graphic results remain proportional to 

"Simple", "Average" and "Standardization" when 

compared to the chart in Fig. 2. For non-conformities 

labeled as "Complex", Fig. 3 indicates a larger 

amount of “RNC (Legacy)” non-conformities, and a 

smaller one for "Improvement", which means that 

according to data, developers make more complex 

errors in more urgent tasks. The “Text” chart shows 

an increase of this kind of error in tasks labeled as 

"New". 

 

Figure 3 - Amount of data attributes 

 
 

The discovery of these trends can support the 

decision of a manager who wants to avoid or mitigate 

certain kinds of errors. It can even support the 

creation of standards for a company to stablish 

quality metrics. 

After preliminary analysis, the algorithm was 

used to find relationships between the errors. Apriori 

gave even more credit the comments above and 

found 14 associations, the first one with a confidence 

level of 76.00% being 153 situations of “Simple” 

non-conformities related to "New" tasks.. The second 

relationship shows the "Simple" attribute is 

associated to a "RNC (Legacy)" task in 63.00% of the 

cases. These factors do not demonstrate a discovery, 

because charts allow the perception that the amount 

of “Simple” non-conformity is high in "RNC 

(Legacy)" and "Improvements" tasks. 

The third relationship associates the 

”Improvement” task with the "Simple" and 

"Average" attributes with 52.00% of reliability, 

meaning that “Improvement” tasks have 52.00% of 

chances to suffer “Simple” and “Average” errors at 

the same time. Such a condition cannot be verified in 

the chart, since it combines two attributes of non-

compliance and it was unknown before this process. 

This is particularly relevant because such knowledge 

allows managers to interfere in software development 

process in order to avoid the occurrence of those 

noncompliances, making it more accurate and agile. 

The whole list with fourteen association rules 

generated can be seen in Table 4, which presents the 

relationship between the attributes taken as base and 

related attributes, instance quantities of the base 

attribute and the number of instances of the 

associated attribute and, finally, the reliability of 

discovered rule. 

Some rules were found again when the algorithm 

crossed the attributes during the rule confirmation 

phase, but with different reliability rates according to 

the base attribute. For example, rules 3, 6, 8, 11, 14 

are equal but in the 3 rule the "Simple" and 

“Average” attributes are taken as base and "TaskType 

= Improvement" is the associated attribute. In rule 6 

the "Simple" attribute becomes associated with 

"Average" and "TaskType = Improvement". In rule 8, 

"Average" comes to be associated with the other two 

attributes. 

 

Table 2 - Depending on the rules generated Apriori 

algorithm 

N

º  

Attribut

e base 

Qnt

. 

Associat

e 

attribute 

Qnt

. 

Relia

bility 

(%) 

1 TypeTas

k=New 

201 Simple=

S 

153 76,00 

2 TypeTas

k 

=RNC(L

egacy) 

459 Simple=

S 

287 63,00 

3 Simple= 244 TypeTas 128 52,00 
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S 

Medium

=S 

k 

=Improv

ement 

4 TypeTas

k 

=Improv

ement 

559 Medium

=S 

281 50,00 

5 Medium

=S  

560 TypeTas

k 

=Improv

ement 

281 50,00 

6 Medium

=S 

TypeTas

k 

=Improv

ement     

281 Simple=

S 

128 46,00 

7 Medium

=S  

560 Simple=

S 

244 44,00 

8 Simple=

S 

TypeTas

k 

=Improv

ement 

365 Medium

=S 

128 35,00 

9 Simple=

S  

836 TypeTas

k 

=RNC(L

egacy) 

287 34,00 

10 Simple=

S  

836 Medium

=S 

244 29,00 

11 TypeTas

k 

=Improv

ement 

559 Simple=

S 

Medium

=S 

128 23,00 

12 Medium

=S  

560 Simple=

S 

TypeTas

k 

=Improv

ement 

128 23,00 

13 Simple=

S 

836 TypeTas

k =New 

153 18,00 

14 Simple=

S 

836 Medium

=S 

TypeTas

k 

=Improv

ement 

128 15,00 

 

VI. CONCLUSIONS 
The KDD process allowed the analisys of a 

database presenting the results of in the testing 

process of system development, where it was 

investigated the relationship between the error kinds 

and the task kinds. 

The study of the results disclosed the 

relationship between "Average" and “Simple” errors 

in over forty percent of these cases and, in those, 

more than fifty percent are related to the same kind of 

task. 

These findings give development managers 

relevant input to support the solution of specific 

problems, improving the final product quality and 

reducing the software development time. 

The work helped to enhance notion of the value 

added by the use of data mining to find meaningful 

relationships in large amount data in an efficient 

fashion and with minimal loss of information. The 

use of a data mining tool to analyze the correlations 

between non-conformities in software 

development proved effective during the validations 

and the intuitive interface and way of operation 

demanded little learning time, what reduced the 

workload to validate the data extracted from the 

source database. 
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