
Denise Fukumi Tsunoda et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 6), August 2014, pp.74-78

 www.ijera.com 74 | P a g e

Knowledge Discovery Applied to a Database of Errors of Systems

Development

Elias Delgobo Junior*, Denise Fukumi Tsunoda**, Egon Walter Wildauer***
*(Department of Science and Information Management, Federal University of Paraná, Paraná, BR)

** (Department of Science and Information Management, Federal University of Paraná, Paraná, BR)

*** (Department of Science and Information Management, Federal University of Paraná, Paraná, BR)

ABSTRACT
This paper presents the knowledge discovery process in a database related to the development of computer

systems through the Apriori algorithm. This method of data mining was succesfull in discovering of patterns of

relationships between kinds of non-conformities found during the software development and relationships of

noncompliance with the kinds of tasks to be performed as an association between two variables "Simple" and

"Average" in more than fifty percent of the cases whit tasks labeled as "Improvement". The discovered rules

may assist in the decision making by development systems managers in order to reduce non-conformities related

to the development of computational systems.

Keywords Data Mining, Knowledge, Errors

I. INTRODUCTION
The rapid growth of data derived from

information systems is constant.These stored data are

useless without, for example, the use of information

extraction methods that allow the discovery of

patterns, models and previously unknown

relationships. Obviously, to support the decision

making process, only accurate and relevant

information is valuable for managers. In this case, it

is valid to apply data mining methods based on

statistical algorithms and machine learning

techniques to discover patterns that "may be rules,

affinities, correlations, trends or forecasting models"

(Turban, 2010, p. 460).

This work aims to discover relationships between the

kinds of errors found during the testing phase of

information systems, relating kinds of errors and

levels of urgency of the tasks perfomed inside a

software development company.

It also seeks to demonstrate that the pressure for

delivering a task can induce the insertion of system

errors by programmers, using the techniques of

knowledge discovery process. The following topics

will cover steps of this study, the chosen database

and its attributes, the mining algorithm used and the

results achieved.

II. THE PROCESS OF KNOWLEDGE

DISCOVERY IN DATABASE (KDD)
According to Turban "the knowledge discovery

based on computer has been used since the 60s.

However, the techniques which make it possible have

been expanded and improved with time" (Turban,

2010, p. 405). In the 1990s with the creation of data

warehouses, the volume of stored data increased and

created room for the techniques of Knowledge

Discovery in Databases (KDD).

Figure 1 – KDD overview

Source: Fayyad, 1996

This concept has been used since the 1980s

demonstrating that there are valuable results

produced by a process ran over data to extract

relevant information for decision making. ” Acording

to Mainon and Rokach (2010), KDD is “an

automatic, exploratory analysis and modeling of large

data repositories. KDD is the organized process of

identifying valid, novel, useful, and understandable

patterns from large and complex data sets.”. Yet,

according to the same authors, “Data Mining (DM) is

the core of the KDD process, involving the inferring

of algorithms that explore the data, develop the

model and discover previously unknown patterns.

The model is used for understanding phenomena

from the data, analysis and prediction.”. Based on

Adriaans and Zantinge (1996), the discovery process

comprises:

 Selection of data: from a database, relevant data

should be selected to be part of the process goals;

 Preprocessing: after being selected,data should

be cleaned, in order to eliminate redundancies,

inconsistencies and null values that may hinder

the mining or analysis of data;

RESEARCH ARTICLE OPEN ACCESS

Denise Fukumi Tsunoda et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 6), August 2014, pp.74-78

 www.ijera.com 75 | P a g e

 Transformation: this step encodes data in order

to facilitate the work of mining, discretizes and

restructures the data, e.g. the database value

AGE discriminated as {1,2, 3 ..., 27, 31, 34, ...,

91,92,97} may be grouped as {1-15, 16-30, ...,

76-90};

 Mining: "the process of extracting unknown

information, while significant, from large

databases to be used in business decision

making." (Singh, 1998);

 Interpretation: in this phase, also known as post

processing, resulting information from the

mining process is analyzed and interpreted.

Fig. 1 presents a sequential overview of the

KDD process, since from the aquisition of the raw

data until the interpretation of these same data turned

into knowledge. It´s important to notice that the

phases are not necessarily required, after obtaining

the data, sometimes uneeded preprocessing and/or

transformation are skiped and the data mining is

performed, followed by the results interpretation.

III. SOFTWARE DEVELOPMENT

ERRORS DATABASE
The database chosen for the process of

knowledge discovery comes from a management

system used by a medium-sized software

development company. Such a database holds data

about non-conformities found during the compliance

and quality testing of the produced software.

The company applies an adaptation of agile

development methodology called Scrum, consisting

basically in dividing the system development into

several functional phases, called sprints. Each sprint

has a cycle 2-4 weeks with planning meeting,

periodic review meeting and feedback meeting. Each

phase is divided into smaller parts which are called

tasks. These are analyzed by specially designated

teams and passed on to the developers responsible for

the tasks.

When the development team completes a task, it

transfers the resulting artifacts to the test teams to

perform the checks in accordance with what was

specified. If non-conformities are found, they are

recorded in a database, and forwarded to the

developers responsible for the correction.

The data used in the KDD process have been

extracted from this database. Initially five attributes

were extracted; however, two of these were

eliminated in the selection process by presenting

repeated and inconsistent values. The choosene

mining algorithm changed the structure of the

database becoming one of the attributes unsuitable

for mining and dividing another attribute used to

categorize kinds of non-conformities in five new

ones, according to the non-conformities registered in

the database.

The class attribute presented in table TaskType is

used as an identifier for the task urgency. Such an

attribute has five possible values: "Improvement"

(when the task is based on an existing functionality,

but at the request of the customer, analyst or tester, it

is submitted for improvement), "New" (when the task

is to add some new functionality), "RNC (Legacy)"

(RNC is a Record of non-Conformity, when the client

requests some urgent change in the system, due to an

error or problem that causes loss to the customer -

considered as Legacy because they are old and not

fixed requests), "RNC (Recent)” (when the customer

requests an urgent change in the system, due to an

error or problem that causes loss to the customer –

considered Recent because they are new) and

"Demand" (when changes are needed to make the

system to conform to laws, standards, ans so on).

Changes required by standards and laws are rare

but urgent, the RNC are records of non-compliance

that receive attention and classification of high

degree of urgency, being labeled as "New" or

"Improvement".

The database presents the kinds of non-

compliances divided into five categories: "Simple"

(when the error found in testing is easy to fix and/or

requires less than an hour of work), "Average" (when

the error found in testing is not so easy to fix and/or

require more than one hour of work), "Complex"

(when the error found in testing somehow stoped the

activity of the user on the system), "Standardization"

(when the error found in testing refers to the visual

standards imposed by the company) and “Text”

(when the error found in testing refers to grammar,

syntax or language issue).

The five listed non-conformities are classified

only at the level of existence, which means, if the

error indeed exists (no matter the amount of the

occurrences) is considered as an "S" and otherwise

the variable will be displayed with a "?".

IV. METHODOLOGY
For the purposes of this research, the process of

knowledge discovery used the methodology proposed

by Fayyad (1996). Data were initially selected from

three different tables: one that lists the tasks to be

performed, one containing the errors found in the

system and another one that lists the error levels

found in the system.

Fields were chosen according to the research

goals. We do not select data to identify somehow the

company or employees.. Then we excluded the tasks

that had no errors, since they were useless for the

purposes of this data mining research.

Finally, five attributes were selected: "Task_cod"

(identifies the task id, the primary key),

"task_priority" (identifies a priority valued from zero

to twenty, in ascending order of importance),

"error_level_desc" (identifies the type of error,

Denise Fukumi Tsunoda et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 6), August 2014, pp.74-78

 www.ijera.com 76 | P a g e

"Simple", "Average", "Complex", "Standardization"

and "Text"), task_level_desc (description of the task

level, "Improvement", "New", ...) and “error_level”

(level of error, numeric attribute).

The attributes were reviewed and it was noted

that it was not appropriate to use all of them, the

"error_level" and "error_level_desc" attributes, even

being different, have values related in almost 100%

of cases. The first one was removed.

It was noticed that the "task_priority" attribute is

repeated in many rows and by a system default it was

always zero, which could lead to unwanted

distortions in results, depending on the method

chosen. This attribute has also been removed.

The Apriori algorithm was applied because the

initial goal of the process is to discover relationships

between error kinds according to their presence in

system testing. The algorithm aims the discovering of

these relationships. According to Aurelio (1999),

Apriori "is responsible for discovering the set of

frequent items via multiple steps in the database.

Each step starts with a seed set of items and such a

seed will generate potential new seed sets called

candidate items set "(AURÉLIO 1999, p. 13).

According to Pang-Ning Tan:

"The Apriori algorithm uses a level approach to

generate association rules where each level

corresponds to the number of items that belong to the

consequent of the rule. Initially, all rules of high

confidence that have only one item in the consequent

are extracted. These rules are then used to generate

new candidate rules. For example, if {acd} → {b}

and {abd} → {c} are rules of high confidence then

the candidate rule {ad} → {bc} is generated by the

fusion of the consequent of both rules. Suppose the

confidence to {bcd} → {a} is low. All rules

containing the item in its consequent including {cd}

→ {ab} {bd} → {ac} {bc} → {d} and {d} → {abc}

may be discarded "(TAN 2005 p.417).

With the choice of mining method it was decided

to change the way the data is displayed, the choice of

Apriori algorithm caused the restructuring of data,

which were aligned according to the errors and then

grouped by task. In this case, the field "task_cod"

was considered irrelevant since it never repeats and

does not add any information to the mining.

The attribute was removed and

"error_level_desc" was divided into columns

according to different kinds of errors previously

discussed. The database was constructed in such a

way that each field holds the number of errors for

each kind of error for each task, which means, if a

certain task has two “Average” errors, three "Simple"

errors, one "Complex" error and none (zero) “Text”

error, the relevant fields would show the numerical

values for each task.

In this configuration it is still not possible to

perform the mining because data are still in

numerical format, which prevents the use of the

algorithm. Therefore, fields with values greated than

zero were replaced by "S" and the zero valued ones

were given value "N", turning them into

alphanumeric attributes.

Still, to make the mining possible, non-english,

special characters and blanks were removed and a

text file was built to match the input requirements of

used mining tool (Weka, discussed in the next

section). In a first attempt, no interesting outcome

was achieved, so the values “N” were replaced by

"?". Such was done because the algorithm considered

the proportion of "N" higher than "S", resulting in

incorrect information. After the replacement some

effective results were reached. After all the processes

mentioned earlier, 1255 instances of tasks with errors

were found, of these, 559 are labeled as

"Improvement", 201 as "New", 459 as

"RNC(Legacy)", 25 as "RNC(Recent) " and 11 as

"Requirement". (Table 1). Some parameters had to be

ajusted so that the algorithm would return some

result. The metric type was chosen for confidence

with a minimum of 18%.

For the mining process it was used an open

source and free tool, Weka, which provides several

data mining methods. Such a software was developed

and is maintained by the University of Waikato. It

was chosen because its simplicity and, use easyness

and because it meets the needs of this research.

Table 1 – Number of errors by type of task

Task Type Total

Errors

Percentage of total

errors (%)

Improvement 559 44,54

New 201 16,01

RNC(Legacy) 459 36,57

RNC(Recent) 25 1,99

Requirement 11 0,87

V. RESULTS AND DISCUSSION
Before mining, it was carried out an analysis of

the data by using the Weka homescreen, which

presents the amount of each attribute values. The

amount of “Improvement” and “RNC (Legacy)”

tasks outnumbers the other kinds, as shown in Table

1 and Fig. 2, but the proportion is not considered in

this case because the object of study is the discovery

of relationships between the kinds of errors. The

research on the reasons for this numerical

disproportion is left for a further study.

Fig. 3 displays the amount of each error kind

related to the tasks. Since the the count of errors per

task was replaced by the variable "S", the result of

Denise Fukumi Tsunoda et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 6), August 2014, pp.74-78

 www.ijera.com 77 | P a g e

the analysis is that each frame gives the graphical

proportion of the occurrence of certain error relation

to the "TaskType" attribute e.g.: the "Simple"

attribute shows that there are 836 tasks with at least

one occurrence of this non-compliance condition,

which are divided according to the class attribute

("TaskType"). Regarding the non-conformities

labeled as "Simple", 43.66% of these are related to

"Improvement" and 34.30% are related to "RNC

(Legacy)".

Figure 2 – Explorer Homescreen, Weka

The graphic results remain proportional to

"Simple", "Average" and "Standardization" when

compared to the chart in Fig. 2. For non-conformities

labeled as "Complex", Fig. 3 indicates a larger

amount of “RNC (Legacy)” non-conformities, and a

smaller one for "Improvement", which means that

according to data, developers make more complex

errors in more urgent tasks. The “Text” chart shows

an increase of this kind of error in tasks labeled as

"New".

Figure 3 - Amount of data attributes

The discovery of these trends can support the

decision of a manager who wants to avoid or mitigate

certain kinds of errors. It can even support the

creation of standards for a company to stablish

quality metrics.

After preliminary analysis, the algorithm was

used to find relationships between the errors. Apriori

gave even more credit the comments above and

found 14 associations, the first one with a confidence

level of 76.00% being 153 situations of “Simple”

non-conformities related to "New" tasks.. The second

relationship shows the "Simple" attribute is

associated to a "RNC (Legacy)" task in 63.00% of the

cases. These factors do not demonstrate a discovery,

because charts allow the perception that the amount

of “Simple” non-conformity is high in "RNC

(Legacy)" and "Improvements" tasks.

The third relationship associates the

”Improvement” task with the "Simple" and

"Average" attributes with 52.00% of reliability,

meaning that “Improvement” tasks have 52.00% of

chances to suffer “Simple” and “Average” errors at

the same time. Such a condition cannot be verified in

the chart, since it combines two attributes of non-

compliance and it was unknown before this process.

This is particularly relevant because such knowledge

allows managers to interfere in software development

process in order to avoid the occurrence of those

noncompliances, making it more accurate and agile.

The whole list with fourteen association rules

generated can be seen in Table 4, which presents the

relationship between the attributes taken as base and

related attributes, instance quantities of the base

attribute and the number of instances of the

associated attribute and, finally, the reliability of

discovered rule.

Some rules were found again when the algorithm

crossed the attributes during the rule confirmation

phase, but with different reliability rates according to

the base attribute. For example, rules 3, 6, 8, 11, 14

are equal but in the 3 rule the "Simple" and

“Average” attributes are taken as base and "TaskType

= Improvement" is the associated attribute. In rule 6

the "Simple" attribute becomes associated with

"Average" and "TaskType = Improvement". In rule 8,

"Average" comes to be associated with the other two

attributes.

Table 2 - Depending on the rules generated Apriori

algorithm

N

º

Attribut

e base

Qnt

.

Associat

e

attribute

Qnt

.

Relia

bility

(%)

1 TypeTas

k=New

201 Simple=

S

153 76,00

2 TypeTas

k

=RNC(L

egacy)

459 Simple=

S

287 63,00

3 Simple= 244 TypeTas 128 52,00

Denise Fukumi Tsunoda et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 8(Version 6), August 2014, pp.74-78

 www.ijera.com 78 | P a g e

S

Medium

=S

k

=Improv

ement

4 TypeTas

k

=Improv

ement

559 Medium

=S

281 50,00

5 Medium

=S

560 TypeTas

k

=Improv

ement

281 50,00

6 Medium

=S

TypeTas

k

=Improv

ement

281 Simple=

S

128 46,00

7 Medium

=S

560 Simple=

S

244 44,00

8 Simple=

S

TypeTas

k

=Improv

ement

365 Medium

=S

128 35,00

9 Simple=

S

836 TypeTas

k

=RNC(L

egacy)

287 34,00

10 Simple=

S

836 Medium

=S

244 29,00

11 TypeTas

k

=Improv

ement

559 Simple=

S

Medium

=S

128 23,00

12 Medium

=S

560 Simple=

S

TypeTas

k

=Improv

ement

128 23,00

13 Simple=

S

836 TypeTas

k =New

153 18,00

14 Simple=

S

836 Medium

=S

TypeTas

k

=Improv

ement

128 15,00

VI. CONCLUSIONS
The KDD process allowed the analisys of a

database presenting the results of in the testing

process of system development, where it was

investigated the relationship between the error kinds

and the task kinds.

The study of the results disclosed the

relationship between "Average" and “Simple” errors

in over forty percent of these cases and, in those,

more than fifty percent are related to the same kind of

task.

These findings give development managers

relevant input to support the solution of specific

problems, improving the final product quality and

reducing the software development time.

The work helped to enhance notion of the value

added by the use of data mining to find meaningful

relationships in large amount data in an efficient

fashion and with minimal loss of information. The

use of a data mining tool to analyze the correlations

between non-conformities in software

development proved effective during the validations

and the intuitive interface and way of operation

demanded little learning time, what reduced the

workload to validate the data extracted from the

source database.

REFERENCES
[1] M. Aurelio, M. Vellasco, C. H. Lopes,

Descoberta de Conhecimento e Mineração

de Dados (Handout Department of Electrical

Engineering, PUC-Rio, RJ, 1999).

[2] U, Fayyad. G, Piatetsky-Shapiro. P. Smyth,

From Data Mining to Knowledge Discovery

in Databases. American Association for

Artificial Intelligence, 1996, p. 37-54.

[3] H. S. Singh. Interactive data

warehousing.(Makron Books, São Paulo,

1998).

[4] T. Pang-Ning, M. Steinbach, K. Vipin.

Introduction to Data Mining (University of

Minnesota, Minnesota, 2005).

[5] O. Maimon, L. Rokach, Introduction to

Knowledge Discovery and Data Mining

(Springer, London, 2010).

[6] E. Turban, J.C. Wetherbe, E. Mclean,

Tecnologia da Informação para Gestão

(Bookman Companhia Editora, São Paulo,

2010).

[7] P. Adriaans, D. Zantige. Data mining

(Addison-Wesley, 1996).

